Reducing Effect of Outliers in Landmark-based Spatial Localization using MLESAC
نویسندگان
چکیده
In the landmark-based localization problem, movement and ambiguity of landmarks and imperfect identification process make measurements of the landmarks completely different from its true value. The incorrect measured data have degraded existing localization methods in the practical applications. This paper proposes a framework to improve accuracy of the existing landmark-based localization methods regardless of such incorrect measured data. The framework is based on Maximum Likelihood Estimation Sample Consensus (MLESAC). It samples a set of measured data randomly to estimate position and orientation, and the estimated pose is evaluated through likelihood of whole measured data with respect to the result. Iterations of sampling, estimation, and evaluation are performed to find the best result to maximize the likelihood. Simulation results demonstrate that the proposed framework improved the the existing localization methods. Analysis using a concept of loss functions also explains that the framework is superior compared to previous researches such as Random Sample Consensus (RANSAC).
منابع مشابه
Effects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments
Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...
متن کاملIdentification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملTowards Automatic Bone Age Estimation from MRI: Localization of 3D Anatomical Landmarks
Bone age estimation (BAE) is an important procedure in forensic practice which recently has seen a shift in attention from X-ray to MRI based imaging. To automate BAE from MRI, localization of the joints between hand bones is a crucial first step, which is challenging due to anatomical variations, different poses and repeating structures within the hand. We propose a landmark localization algor...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملTowards efficient mobile image-guided navigation through removal of outliers
A novel approach for positioning using smartphones and image processing techniques is developed. Using structure from motion, 3D reconstructions of given tracks are created and stored as sparse point clouds. Query images are matched later to these 3D models. High computational costs of image matching and limited storage require compressing point clouds without loss of positioning performance. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008